A new ART-counterpropagation neural network for solving a forecasting problem

نویسندگان

  • Tzu-Chiang Liu
  • Rong-Kwei Li
چکیده

This study presents a novel Adaptive resonance theory-Counterpropagation neural network (ART-CPN) for solving forecasting problems. The network is based on the ART concept and the CPN learning algorithm for constructing the neural network. The vigilance parameter is used to automatically generate the nodes of the cluster layer for the CPN learning process. This process improves the initial weight problem and the adaptive nodes of the cluster layer (Kohonen layer). ART-CPN involves real-time learning and is capable of developing a more stable and plastic prediction model of input patterns by self-organization. The advantages of ART-CPN include the ability to cluster, learn and construct the network model for forecasting problems. The network was applied to solve the real forecasting problems. The learning algorithm revealed better learning efficiency and good prediction performance. q 2004 Elsevier Ltd. All rights reserved.

منابع مشابه

Counterpropagation Neural Network for Solving Power Flow Problem

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

A New Iterative Neural Based Method to Spot Price Forecasting

Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Expert Syst. Appl.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2005